Conformal symmetry breaking differential operators on differential forms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential operators on Hilbert modular forms

We investigate differential operators and their compatibility with subgroups of SL2(R) n. In particular, we construct Rankin–Cohen brackets for Hilbert modular forms, and more generally, multilinear differential operators on the space of Hilbert modular forms. As an application, we explicitly determine the Rankin– Cohen bracket of a Hilbert–Eisenstein series and an arbitrary Hilbert modular for...

متن کامل

Modular forms and differential operators

A~tract, In 1956, Rankin described which polynomials in the derivatives of modular forms are again modular forms, and in 1977, H Cohen defined for each n i> 0 a bilinear operation which assigns to two modular forms f and g of weight k and l a modular form If, g], of weight k + l + 2n. In the present paper we study these "Rankin-Cohen brackets" from t w o points of view. On the one hand we give ...

متن کامل

Differential Conformal Superalgebras and their Forms

We introduce the formalism of differential conformal superalgebras, which we show leads to the “correct” automorphism group functor and accompanying descent theory in the conformal setting. As an application, we classify forms of N = 2 and N = 4 conformal superalgebras by means of Galois cohomology.

متن کامل

Symmetry Classification Using Noncommutative Invariant Differential Operators

Given a class F of differential equations, the symmetry classification problem is to determine for each member f ∈ F the structure of its Lie symmetry group G f , or equivalently of its Lie symmetry algebra. The components of the symmetry vector fields of the Lie algebra are solutions of an associated over-determined ‘defining system’ of differential equations. The usual computer classification...

متن کامل

Differential Operators and Harmonic Weak Maass Forms

For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms have transcendental coefficients, we show that those...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Memoirs of the American Mathematical Society

سال: 2020

ISSN: 0065-9266,1947-6221

DOI: 10.1090/memo/1304